PHYSICAL JOURNAL D EDP Sciences
© Società Italiana di Fisica Springer-Verlag 2002

Magnetic moments for lithium quartet S states

Z.-C. Yan^a

Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

Received 4 December 2000 and Received in final form 26 September 2001

Abstract. The fully correlated calculations of the Zeeman g_J factors for the first three quartet S states of lithium are presented, including relativistic and radiative corrections of orders α^2 , α^2 m/M, and α^3 . The isotope shifts in q_J are predicted precisely for various isotopes of lithium.

PACS. 32.60.+i Zeeman and Stark effects – 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 31.30.Gs Hyperfine interactions and isotope effects, Jahn-Teller effect

1 Introduction

The deviation of the Zeeman g_J factor of a bound electron in an atom from its free-electron value provides the most sensitive test on relativistic and radiative effects for the atom in external magnetic fields. Recently we have performed high-precision calculations [1] of the g_J factors for the low-lying doublet states of lithium and the ground state Be⁺, including relativistic and radiative corrections of orders α^2 , $\alpha^2 m/M$, and α^3 atomic units, based on the extended Breit equation which includes the anomalous magnetic moment interactions [2]. Our theoretical results agree with but are far more accurate than the experimental measurements for the ground states of lithium and Be⁺. In this paper, we extend our work to the first three quartet S states of lithium $1s2s3s$ ⁴S, $1s2s4s$ ⁴S, and $1s2s5s$ ⁴S, including the isotope shifts in q_J . To the best of our knowledge, no such calculation has been reported in the literature. These core-excited states are truly bound states against autoionization and are accessible to experiment. The measured lifetimes of these states are 6.9(3) ns, $15.4(5)$ ns, and $34(2)$ ns $[3-5]$ respectively and are in reasonably good agreement with theoretical predictions [6].

2 Theoretical formulation

The starting point for evaluating the Zeeman g_J factor for lithium in an S state is [7]

$$
g_J = -\langle H_Z' \rangle / (\mu_B H_M J), \qquad (1)
$$

where the matrix element is evaluated in the state $M_J =$ J, H'_Z is the magnetic-field dependent part of the Hamiltonian, H_M is the external magnetic field, and μ_B is the Bohr magneton. Here a convention has been used [7], in which the g_J factor for the electron is negative. The Hamiltonian H'_Z for S states can be written in the form of (in atomic units throughout) [2]

$$
H'_{Z} = -\mu_{\text{B}} g_{e} H_{M} \sum_{i} s_{iz} + \frac{1}{3} (1 + g_{e}) \alpha^{2} \mu_{\text{B}} H_{M}
$$

\n
$$
\times \sum_{i \neq j} \frac{\mathbf{r}_{i} \cdot \mathbf{r}_{ij}}{r_{ij}^{3}} s_{iz} + \frac{1}{3} g_{e} \alpha^{2} \mu_{\text{B}} H_{M} \sum_{i \neq j} \frac{\mathbf{r}_{i} \cdot \mathbf{r}_{ij}}{r_{ij}^{3}} s_{jz}
$$

\n
$$
+ \left(\frac{2}{3} - \frac{1}{6} g_{e}\right) \alpha^{2} \mu_{\text{B}} H_{M} \sum_{i} \nabla_{i}^{2} s_{iz}
$$

\n
$$
- \frac{Z}{3} (1 + g_{e}) \alpha^{2} \mu_{\text{B}} H_{M} \sum_{i} \frac{1}{r_{i}} s_{iz}
$$

\n
$$
+ \frac{1}{3} Z \frac{m}{M} g_{e} \alpha^{2} \mu_{\text{B}} H_{M} \sum_{i} \frac{1}{r_{i}} s_{iz}
$$

\n
$$
+ \frac{1}{3} Z \frac{m}{M} g_{e} \alpha^{2} \mu_{\text{B}} H_{M} \sum_{i < j} \left(\frac{\mathbf{r}_{i} \cdot \mathbf{r}_{j}}{r_{i}^{3}} s_{iz} + \frac{\mathbf{r}_{i} \cdot \mathbf{r}_{j}}{r_{j}^{3}} s_{jz}\right),
$$

\n(2)

where the free electron q_J factor is [8]

$$
g_e = -2\left[1 + \alpha/2\pi - 0.328\,478\,965\,(\alpha/\pi)^2 + 1.181\,241\,456(\alpha/\pi)^3 + \cdots\right],\tag{3}
$$

 m/M is the electron to nuclear mass ratio, and Z is the nuclear charge. The application of angular momentum algebra yields the following expression

$$
g_J = g_e + \frac{1}{\sqrt{(2J+1)(J+1)J}}
$$

$$
\times \left[\alpha^2 \left(\frac{g_e}{6} - \frac{2}{3} \right) F_5 + \alpha^2 \frac{Z}{3} (1 + g_e (1 - m/M)) F_6 \right.
$$

$$
- \alpha^2 \frac{1}{3} (1 + g_e) F_7^{(1)} - \alpha^2 \frac{1}{3} g_e F_7^{(2)} - \alpha^2 \frac{Z}{3} \frac{m}{M} g_e F_S \right],
$$

(4)

e-mail: zvan@unb.ca

where the reduced matrix elements F_5 , F_6 , $F_7^{(1)}$, $F_7^{(2)}$, and F_S are defined with respect to a nonrelativistic wave function Ψ:

$$
F_5 = \sum_{i} \langle \Psi | |\nabla_i^2| |\Psi\rangle \langle S| |s_i| |S\rangle ,\qquad(5)
$$

$$
F_6 = \sum_{i} \langle \Psi | \frac{1}{r_i} | |\Psi\rangle \langle S| |s_i| |S\rangle , \qquad (6)
$$

$$
F_7^{(1)} = \sum_{i \neq j} \langle \Psi | \left| \frac{\mathbf{r}_i \cdot \mathbf{r}_{ij}}{r_{ij}^3} \right| |\Psi\rangle \langle S| |s_i| |S\rangle ,\qquad (7)
$$

$$
F_7^{(2)} = \sum_{i \neq j} \langle \Psi | \frac{\mathbf{r}_i \cdot \mathbf{r}_{ij}}{r_{ij}^3} | |\Psi\rangle \langle S | |s_j| |S\rangle ,\qquad (8)
$$

$$
F_S = \sum_{i \neq j} \langle \Psi | \left| \frac{\mathbf{r}_i \cdot \mathbf{r}_j}{r_i^3} || \Psi \rangle \langle S || s_i || S \rangle , \qquad (9)
$$

with S being the total spin angular momentum.

In order to exhibit all the nuclear mass terms explicitly, we rescale the Hamiltonian for a three-electron atomic system according to $r \to (m/\mu)r$. The resulting Hamiltonian is then

$$
H = H_0 + \lambda H', \qquad (10)
$$

with

$$
H_0 = -\frac{1}{2} \sum_{i=1}^3 \nabla_i^2 - Z \sum_{i=1}^3 \frac{1}{r_i} + \sum_{i>j}^3 \frac{1}{r_{ij}},\qquad(11)
$$

and

$$
H' = \sum_{i>j}^{3} \nabla_i \cdot \nabla_j , \qquad (12)
$$

in units of $2R_M$, where $R_M = (1 - \mu/M)R_\infty$, $\mu =$ $mM/(m + M)$ is the electron reduced mass, and $\lambda =$ $-\mu/M$, which can be treated as a perturbation parameter. The Schrödinger equation

$$
H\Psi = E\Psi \tag{13}
$$

can be solved perturbatively by expanding Ψ and E according to

$$
\Psi = \Psi_0 + \lambda \Psi_1 + \cdots, \qquad (14)
$$

$$
E = \varepsilon_0 + \lambda \varepsilon_1 + \lambda^2 \varepsilon_2 + \cdots \tag{15}
$$

Thus equation (13) becomes

$$
H_0\Psi_0 = \varepsilon_0\Psi_0\,,\tag{16}
$$

$$
(\varepsilon_0 - H_0)\Psi_1 = (H' - \varepsilon_1)\Psi_0. \tag{17}
$$

 ε_1 and ε_2 are

$$
\varepsilon_1 = \langle \varPsi_0 | H' | \varPsi_0 \rangle \,, \tag{18}
$$

$$
\varepsilon_2 = \langle \Psi_0 | H' | \Psi_1 \rangle - \varepsilon_1 \langle \Psi_0 | \Psi_1 \rangle. \tag{19}
$$

Both Ψ_0 and Ψ_1 were solved variationally in multiple basis sets in Hylleraas coordinates containing terms of the form

$$
r_1^{j_1} r_2^{j_2} r_3^{j_3} r_{12}^{j_{12}} r_{23}^{j_{23}} r_{31}^{j_{31}} e^{-\alpha r_1 - \beta r_2 - \gamma r_3} \chi_1 ,\qquad (20)
$$

where χ_1 is a spin function. As described previously [9], all terms from (20) are nominally included such that

$$
j_1 + j_2 + j_3 + j_{12} + j_{23} + j_{31} \le \Omega, \qquad (21)
$$

and the convergence of the eigenvalues is studied as Ω is progressively increased. The perturbing effect of mass polarization $\lambda H'$ on the expectation value of an operator A can be obtained using

$$
\Psi = \Psi_0 + \lambda \left(\Psi_1 - \langle \Psi_1 | \Psi_0 \rangle \Psi_0 \right) + \cdots, \qquad (22)
$$

where the extra term $-\langle \Psi_1 | \Psi_0 \rangle \Psi_0$ is added to Ψ_1 so that the first two terms of the right hand side are orthogonal to each other [10]. Thus,

$$
\langle \Psi | A | \Psi \rangle = A_0 + \lambda A_1 + \cdots, \qquad (23)
$$

where

$$
A_0 = \langle \Psi_0 | A | \Psi_0 \rangle,\tag{24}
$$

and

$$
A_1 = 2\langle \Psi_0 | A | \Psi_1 \rangle - 2\langle \Psi_0 | \Psi_1 \rangle \langle \Psi_0 | A | \Psi_0 \rangle. \tag{25}
$$

Furthermore, due to the use of μ -scaled atomic units in equation (10), the units of $\langle \Psi | A | \Psi \rangle$ in equation (23) are $(\mu/m)^n 2R_{\infty}$, where $-n$ is the degree of homogeneity of operator A in three-electron coordinate space such that

$$
A(\omega \mathbf{r}_1, \omega \mathbf{r}_2, \omega \mathbf{r}_3) = \omega^{-n} A(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3).
$$
 (26)

For example, $n = 2$ for ∇_i^2 . We therefore have the explicit mass-dependent formula

$$
\langle \Psi | A | \Psi \rangle = \left(\frac{\mu}{m}\right)^n (A_0 + \lambda A_1 + \cdots) \text{ in } 2R_{\infty}.
$$
 (27)

Equation (4) can thus be recast into the following expression which is general for S states and correct to orders α^2 , $\alpha^2 m/M$, and α^3

$$
\frac{g_J}{g_e} - 1 = \frac{1}{\sqrt{(2J+1)(J+1)J}} \times \left(\alpha^2 C_{20} + \alpha^3 C_{30} + \alpha^2 \frac{m}{M} C_{21}\right), \quad (28)
$$

where

$$
C_{20} = \frac{1}{2}F_{5\infty} + \frac{1}{6}ZF_{6\infty} - \frac{1}{6}F_{7\infty}^{(1)} - \frac{1}{3}F_{7\infty}^{(2)},
$$
 (29)

$$
C_{30} = -\frac{1}{6\pi} F_{5\infty} + \frac{1}{12\pi} Z F_{6\infty} - \frac{1}{12\pi} F_{7\infty}^{(1)},
$$
(30)

$$
C_{21} = -F_{5\infty} - \frac{1}{2}ZF_{6\infty} - \frac{1}{3}ZF_{5\infty} + \frac{1}{6}F_{7\infty}^{(1)} + \frac{1}{3}F_{7\infty}^{(2)} + \frac{1}{2}\tilde{\epsilon}_5 + \frac{1}{6}Z\tilde{\epsilon}_6 - \frac{1}{6}\tilde{\epsilon}_7^{(1)} - \frac{1}{3}\tilde{\epsilon}_7^{(2)},
$$
\n(31)

the subscript ∞ means that the reduced matrix elements of F_i are calculated using an infinite nuclear mass wave function, and $\tilde{\epsilon}_5 = -A_1$ in equation (27) for the case

Table 1. Convergence of the reduced matrix elements $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}$, and $F_{5\infty}$ for the 1s2s3s ⁴S state of lithium. Units are $2R_{\infty}$.

No. of terms	$F_{5\infty}$	$F_{6\infty}$	$F_{7\infty}$	$F_{S\infty}$
84	-13.4592146826	4.809 046 316 05	0.96791571705	-0.3027220
210	-13.4592556530	4.809 055 210 29	0.96790993511	-0.3073526
462	-13.4592580659	4.809 055 172 30	0.967 907 474 00	-0.3061282
924	-13.4592580845	4.809 055 168 15	0.967 907 415 70	-0.3061851
1716	-13.4592580975	4.809 055 171 11	0.967 907 414 98	-0.3061959
3003	-13.4592580992	4.809 055 171 33	0.967 907 414 59	-0.3061983
4213	-13.4592580995	4.809 055 171 39	0.967 907 414 66	-0.3061982
∞	$-13.4592580995(3)$	4.80905517139(5)	0.96790741466(7)	$-0.3061982(1)$

Table 2. The reduced matrix elements $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}$, and $F_{S\infty}$, as well as the coefficients $\tilde{\epsilon}_5$, $\tilde{\epsilon}_6$, and $\tilde{\epsilon}_7$ for the 1s2s3s ⁴S, 1s2s4s ${}^{4}S$, and 1s2s5s ${}^{4}S$ states of lithium. Units are $2R_{\infty}$.

Term	$1s2s3s$ ⁴ S	$1s2s4s$ ⁴ S	$1s2s5s$ ⁴ S
$F_{5\infty}$	$-13.4592580995(3)$	$-13.318914674(1)$	$-13.267453193(7)$
$F_{6\infty}$	4.80905517139(5)	4.7048411658(4)	4.662358548(2)
$F_{7\infty}$	0.96790741466(7)	0.7956088219(2)	0.71962244580(9)
$F_{S_{\infty}}$	$-0.3061982(1)$	$-0.249177(1)$	$-0.2244555(5)$
$\tilde{\epsilon}_5$	0.098626(1)	0.0961506(1)	0.0925176(3)
$\tilde{\epsilon}_6$	$-0.0141704(1)$	$-0.01217454(3)$	$-0.00988124(5)$
$\tilde{\epsilon}_7$	0.0068011(1)	0.01155169(1)	0.01661506(7)

Table 3. Contributions to $(g_J/g_e - 1) \times 10^6$ for the 1s2s3s ⁴S, 1s2s4s ⁴S, and 1s2s5s ⁴S states of ⁷Li.

of $A = F_5$, etc. In equation (28), the only nuclear mass dependent term is the one proportional to C_{21} . The isotope shift for two isotopes M_1 and M_2 can thus be expressed in the form

$$
\frac{g_J(M_1)}{g_J(M_2)} - 1 = \frac{1}{\sqrt{(2J+1)(J+1)J}} \left(\frac{m}{M_1} - \frac{m}{M_2}\right) \alpha^2 C_{21}.
$$
\n(32)

For a quartet S state, it is easy to see that $F_{7\infty}^{(1)} = F_{7\infty}^{(2)}$. Furthermore, the application of the virial theorem $\langle T \rangle =$ $-E$, where T is the kinetic energy operator and E is the total energy, yields

$$
-F_{5\infty} = ZF_{6\infty} - F_{7\infty}^{(1)}.
$$
 (33)

Thus, for quartet states, we have the following simplified expressions

$$
C_{20} = -\frac{Z}{3}F_{6\infty} \tag{34}
$$

$$
C_{30} = -\frac{1}{4\pi} F_{5\infty} \tag{35}
$$

$$
C_{21} = -\frac{1}{2}F_{5\infty} - \frac{Z}{3}F_{S\infty} + \frac{1}{2}\tilde{\epsilon}_5 + \frac{Z}{6}\tilde{\epsilon}_6 - \frac{1}{2}\tilde{\epsilon}_7, (36)
$$

where $\tilde{\epsilon}_7 = \tilde{\epsilon}_7^{(1)} = \tilde{\epsilon}_7^{(2)}$.

3 Results

Equations (16, 17) were solved variationally in Hylleraas basis sets equation (20) for the $1s2s3s$ ⁴S, $1s2s4s$ ⁴S, and 1s2s5s ⁴S states of lithium. The details of the solutions can be found in reference [9]. Table 1 lists the convergence study on the reduced matrix elements $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}$, and $F_{S\infty}$, where $F_{7\infty}$ denotes either $F_{7\infty}^{(1)}$ or $F_{7\infty}^{(2)}$, for the lowest state 1s2s3s ⁴S, as the size of basis set increases progressively. Table 2 presents a complete list of the reduced matrix elements of $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}$, and $F_{S\infty}$, as well as the coefficients $\tilde{\epsilon}_5$, $\tilde{\epsilon}_6$, and $\tilde{\epsilon}_7$ for the first three quartet S states. From Table 2, one can verify the identity equation (33) numerically. Our final results for the q_J factors and the isotope shifts are contained in Tables 3 and 4. The electron reduced mass to nuclear mass ratios, including the binding energy corrections, are tabulated in Table 5 [11–13]. It should be pointed out that the numbers quoted in brackets in Tables 3 and 4 are computational uncertainties only. The uncertainties from the nuclear masses and the fine structure constant α are not included. Furthermore, the next higher-order relativistic and radiative corrections to g_J not included in the calculation are terms of order α^4 . For isotope shifts, the next higher-order terms are of orders $\alpha^2 (m/M)^2$ and $\alpha^3 m/M$.

Table 4. Isotope shifts in g_J for lithium in the $1s2s3s$ ⁴S, $1s2s4s$ ⁴S, and $1s2s5s$ ⁴S states. In the table, $G(^{A}Li)$ = $(g_J(^A\text{Li})/g_J(^7\text{Li}) - 1) \times 10^{11}$, where A denotes an isotope of lithium.

Isotope	$1s2s3s$ ⁴ S	$1s2s4s$ ⁴ S	$1s2s5s$ ⁴ S
$G(^{6}{\rm Li})$	126.619125(9)	124.29588(2)	123.33561(2)
$G(^{8}Li)$	$-95.461575(7)$	$-93.71001(2)$	$-92.986042(8)$
$G(^{9}{\rm Li})$	$-169.49376(1)$	$-166.38384(3)$	$-165.09841(1)$
$G(^{11}\mathrm{Li})$	$-277.49526(2)$	$-272.40370(4)$	$-270.29918(2)$

Table 5. Electron reduced mass to nuclear mass ratios μ/M for lithium isotopes.

$\mu/M \times 10^4$
0.912 167 591
0.782 020 201
0.683 896 331
0.607 798 153
0.496 780 632

All these smaller effects have not yet been studied theoretically. On the other hand, no experimental measurements are available for comparison. I hope, however,

that the present work may stimulate future research activities in both theory and experiment.

Research support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

- 1. Z.-C. Yan, Phys. Rev. Lett. **86**, 5683 (2001).
- 2. R.A. Hegstrom, Phys. Rev. A **7**, 451 (1973).
- 3. D. Sonnek, S. Mannervik, J. Phys. B **23**, 2451 (1990).
- 4. S. Mannervik, Phys. Scripta **22**, 575 (1981).
- 5. S. Mannervik, H. Cederquist, Phys. Scripta **27**, 175 (1983).
- 6. M.-K. Chen, J. Phys. B **29**, 2179 (1996).
- 7. R.A. Hegstrom, Phys. Rev. A **11**, 421 (1975).
- 8. V.W. Hughes, T. Kinoshita, Rev. Mod. Phys. **71**, S133 (1999).
- 9. Z.-C. Yan, J. Phys. B **34**, 3569 (2001).
- 10. L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill Book Company, 1968).
- 11. Z.-C. Yan, G.W.F. Drake, Phys. Rev. A **61**, 022504 (2000).
- 12. G. Audi, A.H. Wapstra, Nucl. Phys. A **595**, 409 (1995).
- 13. R.C. Weast, CRC Handbook of Chemistry and Physics, 1st student edn. (CRC Press, Inc., Boca Raton, 1987).