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Magnetic moments for lithium quartet S states
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Abstract. The fully correlated calculations of the Zeeman gJ factors for the first three quartet S states of
lithium are presented, including relativistic and radiative corrections of orders α2, α2 m/M , and α3. The
isotope shifts in gJ are predicted precisely for various isotopes of lithium.

PACS. 32.60.+i Zeeman and Stark effects – 31.30.Jv Relativistic and quantum electrodynamic effects in
atoms and molecules – 31.30.Gs Hyperfine interactions and isotope effects, Jahn-Teller effect

1 Introduction

The deviation of the Zeeman gJ factor of a bound elec-
tron in an atom from its free-electron value provides the
most sensitive test on relativistic and radiative effects for
the atom in external magnetic fields. Recently we have
performed high-precision calculations [1] of the gJ factors
for the low-lying doublet states of lithium and the ground
state Be+, including relativistic and radiative corrections
of orders α2, α2 m/M , and α3 atomic units, based on
the extended Breit equation which includes the anoma-
lous magnetic moment interactions [2]. Our theoretical
results agree with but are far more accurate than the ex-
perimental measurements for the ground states of lithium
and Be+. In this paper, we extend our work to the first
three quartet S states of lithium 1s2s3s 4S, 1s2s4s 4S, and
1s2s5s 4S, including the isotope shifts in gJ . To the best
of our knowledge, no such calculation has been reported in
the literature. These core-excited states are truly bound
states against autoionization and are accessible to experi-
ment. The measured lifetimes of these states are 6.9(3) ns,
15.4(5) ns, and 34(2) ns [3–5] respectively and are in rea-
sonably good agreement with theoretical predictions [6].

2 Theoretical formulation

The starting point for evaluating the Zeeman gJ factor for
lithium in an S state is [7]

gJ = −〈H ′Z〉/(µBHMJ) , (1)

where the matrix element is evaluated in the state MJ =
J , H ′Z is the magnetic-field dependent part of the Hamil-
tonian, HM is the external magnetic field, and µB is the
Bohr magneton. Here a convention has been used [7], in
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which the gJ factor for the electron is negative. The Hamil-
tonian H ′Z for S states can be written in the form of (in
atomic units throughout) [2]

H ′Z = −µBgeHM
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where the free electron gJ factor is [8]

ge = −2 [1 + α/2π − 0.328 478 965 (α/π)2

+ 1.181 241 456(α/π)3 + · · · ] , (3)

m/M is the electron to nuclear mass ratio, and Z is the
nuclear charge. The application of angular momentum al-
gebra yields the following expression
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where the reduced matrix elements F5, F6, F (1)
7 , F (2)

7 , and
FS are defined with respect to a nonrelativistic wave func-
tion Ψ :
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with S being the total spin angular momentum.
In order to exhibit all the nuclear mass terms explic-

itly, we rescale the Hamiltonian for a three-electron atomic
system according to r → (m/µ)r. The resulting Hamilto-
nian is then

H = H0 + λH ′ , (10)

with
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and

H ′ =
3∑
i>j

∇i · ∇j , (12)

in units of 2RM , where RM = (1 − µ/M)R∞, µ =
mM/(m + M) is the electron reduced mass, and λ =
−µ/M , which can be treated as a perturbation param-
eter. The Schrödinger equation

HΨ = EΨ (13)

can be solved perturbatively by expanding Ψ and E ac-
cording to

Ψ = Ψ0 + λΨ1 + · · · , (14)
E = ε0 + λε1 + λ2ε2 + · · · (15)

Thus equation (13) becomes

H0Ψ0 = ε0Ψ0 , (16)
(ε0 −H0)Ψ1 = (H ′ − ε1)Ψ0 . (17)

ε1 and ε2 are

ε1 = 〈Ψ0|H ′|Ψ0〉 , (18)
ε2 = 〈Ψ0|H ′|Ψ1〉 − ε1〈Ψ0|Ψ1〉· (19)

Both Ψ0 and Ψ1 were solved variationally in multiple basis
sets in Hylleraas coordinates containing terms of the form

rj11 rj22 rj33 rj12
12 rj23

23 rj31
31 e−αr1−βr2−γr3 χ1 , (20)

where χ1 is a spin function. As described previously [9],
all terms from (20) are nominally included such that

j1 + j2 + j3 + j12 + j23 + j31 ≤ Ω , (21)

and the convergence of the eigenvalues is studied as Ω is
progressively increased. The perturbing effect of mass po-
larization λH ′ on the expectation value of an operator A
can be obtained using

Ψ = Ψ0 + λ (Ψ1 − 〈Ψ1|Ψ0〉Ψ0) + · · · , (22)

where the extra term −〈Ψ1|Ψ0〉Ψ0 is added to Ψ1 so that
the first two terms of the right hand side are orthogonal
to each other [10]. Thus,

〈Ψ |A|Ψ〉 = A0 + λA1 + · · · , (23)

where

A0 = 〈Ψ0|A|Ψ0〉, (24)

and

A1 = 2〈Ψ0|A|Ψ1〉 − 2〈Ψ0|Ψ1〉〈Ψ0|A|Ψ0〉· (25)

Furthermore, due to the use of µ-scaled atomic units in
equation (10), the units of 〈Ψ |A|Ψ〉 in equation (23) are
(µ/m)n 2R∞, where −n is the degree of homogeneity of
operator A in three-electron coordinate space such that

A(ωr1, ωr2, ωr3) = ω−nA(r1, r2, r3) . (26)

For example, n = 2 for ∇2
i . We therefore have the explicit

mass-dependent formula

〈Ψ |A|Ψ〉 =
(
µ

m

)n
(A0 + λA1 + · · · ) in 2R∞ . (27)

Equation (4) can thus be recast into the following expres-
sion which is general for S states and correct to orders α2,
α2m/M , and α3
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the subscript ∞ means that the reduced matrix elements
of Fi are calculated using an infinite nuclear mass wave
function, and ε̃5 = −A1 in equation (27) for the case
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Table 1. Convergence of the reduced matrix elements F5∞, F6∞, F7∞, and FS∞ for the 1s2s3s 4S state of lithium. Units
are 2R∞.

No. of terms F5∞ F6∞ F7∞ FS∞
84 –13.459 214 682 6 4.809 046 316 05 0.967 915 717 05 –0.302 722 0

210 –13.459 255 653 0 4.809 055 210 29 0.967 909 935 11 –0.307 352 6

462 –13.459 258 065 9 4.809 055 172 30 0.967 907 474 00 –0.306 128 2

924 –13.459 258 084 5 4.809 055 168 15 0.967 907 415 70 –0.306 185 1

1716 –13.459 258 097 5 4.809 055 171 11 0.967 907 414 98 –0.306 195 9

3003 –13.459 258 099 2 4.809 055 171 33 0.967 907 414 59 –0.306 198 3

4213 –13.459 258 099 5 4.809 055 171 39 0.967 907 414 66 –0.306 198 2

∞ –13.459 258 099 5(3) 4.809 055 171 39(5) 0.967 907 414 66(7) –0.306 198 2(1)

Table 2. The reduced matrix elements F5∞, F6∞, F7∞, and FS∞, as well as the coefficients ε̃5, ε̃6, and ε̃7 for the 1s2s3s 4S,
1s2s4s 4S, and 1s2s5s 4S states of lithium. Units are 2R∞.

Term 1s2s3s 4S 1s2s4s 4S 1s2s5s 4S

F5∞ –13.459 258 099 5(3) –13.318 914 674(1) –13.267 453 193(7)

F6∞ 4.809 055 171 39(5) 4.704 841 165 8(4) 4.662 358 548(2)

F7∞ 0.967 907 414 66(7) 0.795 608 821 9(2) 0.719 622 445 80(9)

FS∞ –0.306 198 2(1) –0.249 177(1) –0.224 455 5(5)

ε̃5 0.098 626(1) 0.096 150 6(1) 0.092 517 6(3)

ε̃6 –0.014 170 4(1) –0.012 174 54(3) –0.009 881 24(5)

ε̃7 0.006 801 1(1) 0.011 551 69(1) 0.016 615 06(7)

Table 3. Contributions to (gJ/ge − 1)× 106 for the 1s2s3s 4S, 1s2s4s 4S, and 1s2s5s 4S states of 7Li.

Contribution 1s2s3s 4S 1s2s4s 4S 1s2s5s 4S

α2 –66.121 817 839 5(8) –64.688 933 573(6) –64.104 821 35(2)

α3 0.107 463 655 644(3) 0.106 343 102 24(1) 0.105 932 214 89(6)

α2m/M 0.007 607 505 2(6) 0.007 467 920(1) 0.007 410 225 5(6)

Total –66.006 746 678(1) –64.575 122 550(6) –63.991 478 91(2)

of A = F5, etc. In equation (28), the only nuclear mass de-
pendent term is the one proportional to C21. The isotope
shift for two isotopes M1 and M2 can thus be expressed
in the form
gJ(M1)
gJ(M2)
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For a quartet S state, it is easy to see that F (1)
7∞ = F

(2)
7∞.

Furthermore, the application of the virial theorem 〈T 〉 =
−E, where T is the kinetic energy operator and E is the
total energy, yields
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Thus, for quartet states, we have the following simplified
expressions
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3 Results

Equations (16, 17) were solved variationally in Hylleraas
basis sets equation (20) for the 1s2s3s 4S, 1s2s4s 4S, and
1s2s5s 4S states of lithium. The details of the solutions
can be found in reference [9]. Table 1 lists the convergence
study on the reduced matrix elements F5∞, F6∞, F7∞,
and FS∞, where F7∞ denotes either F (1)

7∞ or F (2)
7∞, for the

lowest state 1s2s3s 4S, as the size of basis set increases
progressively. Table 2 presents a complete list of the
reduced matrix elements of F5∞, F6∞, F7∞, and FS∞, as
well as the coefficients ε̃5, ε̃6, and ε̃7 for the first three
quartet S states. From Table 2, one can verify the identity
equation (33) numerically. Our final results for the gJ
factors and the isotope shifts are contained in Tables 3
and 4. The electron reduced mass to nuclear mass ratios,
including the binding energy corrections, are tabulated
in Table 5 [11–13]. It should be pointed out that the
numbers quoted in brackets in Tables 3 and 4 are com-
putational uncertainties only. The uncertainties from the
nuclear masses and the fine structure constant α are not
included. Furthermore, the next higher-order relativistic
and radiative corrections to gJ not included in the calcu-
lation are terms of order α4. For isotope shifts, the next
higher-order terms are of orders α2 (m/M)2 and α3m/M .
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Table 4. Isotope shifts in gJ for lithium in the 1s2s3s 4S,
1s2s4s 4S, and 1s2s5s 4S states. In the table, G(ALi) =
(gJ(ALi)/gJ(7Li) − 1) × 1011, where A denotes an isotope of
lithium.

Isotope 1s2s3s 4S 1s2s4s 4S 1s2s5s 4S

G(6Li) 126.619 125(9) 124.295 88(2) 123.335 61(2)

G(8Li) –95.461 575(7) –93.710 01(2) –92.986 042(8)

G(9Li) –169.493 76(1) –166.383 84(3) –165.098 41(1)

G(11Li) –277.495 26(2) –272.403 70(4) –270.299 18(2)

Table 5. Electron reduced mass to nuclear mass ratios µ/M
for lithium isotopes.

Mass number µ/M × 104

6 0.912 167 591

7 0.782 020 201

8 0.683 896 331

9 0.607 798 153

11 0.496 780 632

All these smaller effects have not yet been studied
theoretically. On the other hand, no experimental mea-
surements are available for comparison. I hope, however,

that the present work may stimulate future research ac-
tivities in both theory and experiment.
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